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Short recap of history — in an innovative format



Started 160 years ago



Long before the talkies appeared.



Silent lecture



Riemann (1857)
Theorie der Abel’schen Funktionen

• Riemann surfaces as branched covers of CP1,
• genus g surfaces depend on 3g − 3 parameters,
• H0(C , L) ≥ deg L + 1 − g .



Cayley (1862)
A new analytic representation of curves in space

• C ⊂ P3 7→ Cayley(C ) ⊂ Grass(P1,P3)
Cayley(C ) = {lines L : L ∩ C 6= ∅}.

• (Moduli of space curves) →֒ (divisors on Grassmannian).
• Now Cayley form is called Chow form.



Hurwitz (1891)
Über Riemann’sche Flächen mit gegebenen
Verzweigungspunkten

• Hurwitz space: branched covers of CP1,
• Mg is irreducible over C.
• Char p: by Deligne-Mumford (1969)



Klein (1897-1912 with Fricke)
Vorlesungen über die Theorie der automorphen Funktionen

• Riemann surfaces as quotients of the unit disc in C,
• study of discrete subgroups of PSL2(R).
• Mg exists as a real orbifold.



Severi (1915)
Sulla classificazione delle curve algebriche e sul teorema
d’esistenza di Riemann

• return to algebraic theory: plane curves with nodes.
• Mg is unirational for g ≤ 10.



Siegel (1935),
Über die analytische Theorie der quadratischen Formen

• Ag : analytic moduli of abelian varieties
• as quotient of the Siegel upper half plane.
• Reads like modern mathematics.



Teichmüller (1944)
Veränderliche Riemannsche Flächen

• Teichmüller space Tg : Riemann surfaces
with marked generators of π1.

• Treats both complex structure and moduli functor.



Music selected and performed by Aaron Bertram

• Verlinde conjecture,
• Quantum Schubert Calculus,
• 12 = 10 + 2 × 1 (with Abramovich)
• Tropical Nullstellensatz (with Easton)



Moduli objects

Curve case.

• Interior: smooth, projective, ample K .
• Boundary: nodal, projective, ample K .

Surface case.

• Interior: Du Val (=ADE), projective, ample K .
• Boundary: semi-log-canonical, projective, ample K .

Higher dimensional case.

• Interior: canonical singularity, projective, ample K .
• Boundary: semi-log-canonical, projective, ample K .

Stable curve/surface/variety.



Interior families — curves

X → S proper family of irreducible curves. Then

s 7→ Nor(Xs) = Res(Xs) form a smooth, proper family iff

s 7→ genus
(

Res(Xs)
)

is locally constant.



Interior families — higher dimensions

CanRes(Xs):= canonical model of Res(Xs)

Theorem
X → S proper family of irreducible varieties of general type.
Assume that S is reduced, connected. Equivalent:

• s 7→ CanRes(Xs) form a flat, proper family.

• s 7→ H0
(

Res(Xs),O(mK )
)

are all constant.

• s 7→ vol
(

Res(Xs),K
)

is constant.

• s 7→ (K n) is constant for CanRes(Xs).



Interior families III.

Corollary (Siu, Kawamata, Nakayama)

Let g : X → S be flat, proper, fibers of general type,
smooth (or with canonical singularities).
Then s 7→ Can(Xs) form a flat, stable family.



Stable families I.

Curve case.

X → S flat, proper, fibers nodal with ample K .

Higher dimensional case.

X → S flat, proper, fibers slc with ample K .

NEED MORE!



Semi-log-canonical is not an open condition

Family of varieties in P5
x × A2

st :

X :=

(

rank

(

x0 x1 x2
x1 + sx4 x2 + tx5 x3

)

≤ 1

)

.

Claim: the following are equivalent:

– KXst
is Q-Cartier

– 3KXst
is Cartier

– either (s, t) = (0, 0) or st 6= 0.

Being stable is not even locally closed.



Stable families II.

Higher dimensional case.

g : X → S flat, proper, fibers slc with ample K AND

• If S = DVR : KX/S is Q-Cartier.
• If S normal: KX/S is Q-Cartier.
• If S reduced: equivalent to normalization (char 0).
• (KSB defn.) ∀m > 0 ∃Lm flat sheaf with S2 fibers:

Lm ∼= ω
⊗m
X/S on the Gorenstein locus of g .

• (Viehweg defn.) ∃m > 0 and a line bundle Lm:

Lm ∼= ω
⊗m
X/S on the Gorenstein locus of g .



Stable families III.

Comparing V and KSB conditions:

• V version depends on m in char p.

• equivalent over reduced schemes in char 0 (not in char p).

• [K-Altmann, 2015] For cyclic quotients of surfaces
– infinitesimal KSB-deformations all globalize,
– there are many more infinitesimal V-deformations.



KSB-stability is representable

f : X → S : flat family of normal varieties
of pure relative dimension,

Theorem
There is a monomorphism iS : S stable → S
such that, for every g : T → S, the following are equivalent

1 The pull-back fT : XT → T is KSB-stable.

2 g factors as

g : T → S stable iS→ S .



Moduli space of stable varieties

Theorem
The moduli functor of stable varieties has a coarse moduli
space that is locally of finite type and satisfies the valuative
criterion of properness.

Theorem (Karu, Alexeev, Hacon-McKernan-Xu)

The connected components are proper.

Theorem (Fujino, Kovács-Patakfalvi)

The connected components are projective.



Complete families: Semi-stable reduction

Curve case. (Kempf–Knudsen–Mumford–Saint-Donat)
X → S proper family of curves. There exist
• S ′ → S proper, generically finite and
• X ′ → S ′ birational to X ×S S ′,

such that X ′ → S ′ has reduced, nodal fibers.

Higher dimensional case.

(Abramovich, Karu, Temkin, W lodarczyk)

........... such that X ′ → S ′ has

reduced, normal crossing (almost) fibers.



Complete families of curves

Reduced, nodal curve determines the stable curve.

• Geometric: delete rtl tails and contract rtl bridges.

• Canonical ring: C 7→ Proj
∑

H0(C ,mKC ).

• Functorial: g : X → S flat, proper; reduced, nodal fibers,
⇒ g stable : X stable → S .

Proof. Etale locally over (0, S).
Take a divisor D that meets X0 at all comps of (X0)stable.

Claim: R1g∗O(mD) = 0 for m ≫ 1 so

X stable = ProjS
∑

m≫1 OX (mD).



Complete families of surfaces I.

Reduced, normal crossing surface does not determine

a stable surface.

•
∑

H0(S ,mKS) need not be finitely generated (K. 2011).

• A surface S (with quotient singularties) can have 2
deformations Xi → A1 such that the central fibers of
X stable

i → A1 are not isomorphic.

Corollary. Over a nodal curve B = (xy = 0) there is
X → B flat, reduced, quotient sings. fibers such that
X stable → B does not exist,

(not even after ramified base change).



Complete families of varieties II.

Theorem (K.-Nicaise-Xu)

g : X → S with reduced, slc fibers and normal generic fiber.
If S is smooth then we get g stable : X stable → S.
( + commutes with dominant base changes)

• (Tsunoda, 1984) For smoothings of snc surfaces, we get a
unique canonical model. (????)

Questions.

• KNX over normal bases?
• Only finitely many stable models?
• Tsunoda in higher dimension?



Moduli of pairs: objects

Stable pair: (X ,∆ =
∑

aiDi)

• Global condition: KX + ∆ ample.

• Local condition: semi-log-canonical

implies 0 ≤ ai ≤ 1 and Di 6⊂ Sing(X ).

Canonical ring:
∑

m≥0 H
0
(

X ,OX (mKX + ⌊m∆⌋)
)

.



Moduli of pairs: families

Major problem:
In stable families g : (X ,∆) → S

X → S is flat but
∆ → S is not flat.



Example: lines on families of quadric surfaces.

Q := (x2 − y 2 + z2 − t2w 2 = 0) ⊂ P3
xyzw × A1

t ,

Lt = (x − y = z − tw = 0) and L′t = (x + y = z − tw = 0).

Compute self-intersections:
(aL0 + bL′0)2 = 1

2
(a + b)2 and (aLg + bL′g )2 = 2ab. So

• (aL0 + bL′0)2 ≥ (aLg + bL′g )2,
• aLt + bL′t Cartier on every fiber iff a + b is even,
• aL + bL′ is globally Cartier iff equality holds.



Numerical Cartier condition; weak form

Theorem (K., Bhatt-de Jong)

– f : X → C is flat, projective,
– normal or S2 fibers.
– D divisor such that each Dc is Cartier and ample. Then

1 c 7→ (Dn
c ) is upper semi-continuous and

2 D is Cartier iff the above function is constant.



Numerical criterion of stability

Corollary

f : (X ,∆) → S flat, projective, S reduced,
– fibers are semi-log-canonical with
– ample log-canonical class KXs

+ ∆s . Then

1 s 7→
(

KXs
+ ∆s

)n
is upper semi-continuous and

2 f is stable iff s 7→
(

KXs
+ ∆s

)n
is locally constant.

Not equivalent

s 7→ H0
(

Xs ,OXs
(mKXs

+ ⌊m∆s⌋)
)

is locally constant.



Coefficients ≥ 1
2

— I.

Principle. If (X ,∆) is semi-log-canonical and
the coefficients of ∆ are close to 1 then
Supp∆ is well behaved.

Theorem (K.-Kovács, 2010, 2018)

Supp∆=1 is Du Bois.

Theorem (K. 2014)

Supp∆>5/6 is seminornal.

Example:
(

A2,
5
6
(x2 = y 3)

)

is log-canonical.



Coefficients ≥ 1
2

— II.

Theorem (K. 2014)

g : X → S is stable then Supp∆>1/2 is flat over S.

Corollary

If all coefficients in ∆ are >
1
2
then

the moduli of stable pairs (X ,∆) can be handled as

1 flat families of varieties X plus

2 flat families of divisors on X .



Coefficients ≥ 1
2

— III.

Theorem. [K. 2018] g : X → S is stable, S reduced and all
coefficients in ∆ are ≥ 1

2
. Then:

1 The sheaves ω
[m]
X/S

(

⌊m∆⌋
)

are flat over S
and commute with base change.

2 s 7→ χ
(

Xs , ω
[m]
Xs

(

⌊m∆s⌋
))

are locally constant.

3 If coeff∆ ⊂ {1
2
,
2
3
,
3
4
, . . . , 1}, then, f∗ω

[m]
X/S

(

⌊m∆⌋
)

is
locally free and commutes with base change.

Caveat: Normal general fiber or relative dim. 2.



Main open question

What is the right moduli functor for

general stable pairs (X ,∆)?

Known cases

• Reduced bases in char 0.
• Non-reduced bases: non-equivalent versions in char 0.
• Problems in char p, even over reduced curves.



Coefficients ≥ 1
2

— IV.

Localized version: Let (X ,H + ∆) be lc pair, H is Cartier

and coeff∆ ⊂ [1
2
, 1]. Then ω

[m]
X

(

⌊m∆⌋
)

is S3 along H .

History: Elkik, Fujino, Alexeev, Hacon

Method of proof:
– g : Y → X proper, H ⊂ X Cartier, HY := g ∗H .
– F a coherent sheaf on Y , S3 along HY .
When is g∗F S3 along H?

Push-forward 0 → F (−HY ) → F → F |HY
→ 0 to get

0 → g∗F (−H) → g∗F → g∗
(

F |HY

)

→ OX (−H) ⊗ R1g∗F

Thus g∗F is S3 along H if (almost iff)

(a) R1g∗F = 0 and

(b) g∗
(

F |HY

)

is S2 along H .



Coefficients ≥ 1
2

— V.

(a) R1g∗F = 0 and

(b) g∗
(

F |HY

)

is S2 along H .

Kodaira-type vanishing: (a) needs F = K + (positive)

(b) needs F = (negative) + (fractional)
Example: g : S → T birational map of normal surfaces,
F exceptional. Then

F is g -negative ⇒ F is effective ⇒ g∗OS(F ) = OT is S2.

Choosing g : Y → X small, the
fractional part gives some wiggle room.



Coefficients ≥ 1
2

— VI.

Question. Let (X ,∆) be an slc pair, coeff∆ ⊂ [2
3
, 1].

x ∈ X codimension ≥ 3, not an lc center. Is

depthx ω
[m]
X

(

⌊m∆⌋
)

≥ 3 ?
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