Logo

Mathematical Sciences Research Institute

Home > Scientific > Colloquia & Seminars

Colloquia & Seminars

All Seminars

Postdoc Seminars

Graduate Seminars

Other Colloquia & Seminars



Current Seminars

  1. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST

Upcoming Seminars

  1. Fellowship of the Ring, National Seminar: The quest for F-rational signature

    Location: MSRI: Online/Virtual
    Speakers: Ilya Smirnov (Stockholm University)

    To attend this seminar, you must register in advance, by clicking HERE.

    Abstract: Strongly F-regular singularities are one of the fundamental classes of singularities defined by the properties of Frobenius endomorphism. This class of mild singularities can be detected using F-signature, an invariant of a local ring with many good properties. Through this connection we obtain a powerful tool for studying strongly F-regular singularities, for example, several results on "mildness" of F-regular can be quantified using F-signature.  

    Another fundamental class of singularities in positive characteristic are F-rational singularities. While generally more severe, this class of singularities is in many aspects analogous to strongly F-regular singularities and can be even understood by "moving" the definition of F-regularity to take place in the dualizing module. Naturally, there has been interest in adapting the definition of F-signature to work with F-rational singularities. 

    While there is no complete solution yet, I am convinced that such a theory should exist. As my evidence, I will present results of a joint work with Kevin Tucker, and prior works of Hochster and Yao, and Sannai.

    My talk will be self-contained. I will discuss all necessary background, such as definitions, properties, and relations between these notions, in the first half and then proceed to more technical results in the second half. 

    Updated on Jan 21, 2021 09:43 AM PST
  2. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  3. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  4. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  5. Fellowship of the Ring, National Seminar: Ideals with a radical generic initial ideal

    Location: MSRI: Online/Virtual
    Speakers: Elisa Gorla (Université de Neuchâtel)

    To attend this seminar, you must register in advance, by clicking HERE.

    Abstract: The choice of a term order allows us to associate to any ideal I a monomial ideal, called the initial ideal of I. The initial ideal of I depends not only on the choice of a term order, but also on the system of coordinates. Nevertheless, many properties of I can be inferred from those of its initial ideal(s). For a given term order and in a generic coordinate system, however, the initial ideal of I is always the same and it is then called the generic initial ideal of I. In my talk, I will introduce a family of ideals whose generic initial ideal is independent of the choice of both the term order and of the system of coordinates. These are exactly the multigraded homogeneous ideals which have a radical generic initial ideal. Multigraded ideals which have a radical generic initial ideal show interesting rigidity properties, which e.g. allow us to deduce information on their universal Groebner bases. In the talk, I will present examples of ideals which belong to this class and of what we can deduce about them using this machinery. The original work in the talk is joint with Aldo Conca and Emanuela De Negri.

    Updated on Jan 26, 2021 04:18 PM PST
  6. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  7. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  8. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  9. Fellowship of the Ring, National Seminar:

    Location: MSRI: Online/Virtual

    To attend this seminar, you must register in advance, by clicking HERE.

    Updated on Jan 11, 2021 04:31 PM PST
  10. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  11. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  12. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  13. Fellowship of the Ring, National Seminar:

    Location: MSRI: Online/Virtual

    To attend this seminar, you must register in advance, by clicking HERE.

    Updated on Jan 11, 2021 04:32 PM PST
  14. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  15. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  16. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  17. Fellowship of the Ring, National Seminar:

    Location: MSRI: Online/Virtual

    To attend this seminar, you must register in advance, by clicking HERE.

    Updated on Jan 11, 2021 04:32 PM PST
  18. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  19. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  20. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  21. Fellowship of the Ring, National Seminar:

    Location: MSRI: Online/Virtual

    To attend this seminar, you must register in advance, by clicking HERE.

    Updated on Jan 11, 2021 04:32 PM PST
  22. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  23. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  24. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  25. Fellowship of the Ring, National Seminar:

    Location: MSRI: Online/Virtual

    To attend this seminar, you must register in advance, by clicking HERE.

    Updated on Jan 11, 2021 04:34 PM PST
  26. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  27. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  28. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  29. Fellowship of the Ring, National Seminar:

    Location: MSRI: Online/Virtual

    To attend this seminar, you must register in advance, by clicking HERE.

    Updated on Jan 11, 2021 04:34 PM PST
  30. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  31. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  32. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  33. Fellowship of the Ring, National Seminar:

    Location: MSRI: Online/Virtual

    To attend this seminar, you must register in advance, by clicking HERE.

    Updated on Jan 11, 2021 04:35 PM PST
  34. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  35. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  36. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  37. Fellowship of the Ring, National Seminar:

    Location: MSRI: Online/Virtual

    To attend this seminar, you must register in advance, by clicking HERE.

    Updated on Jan 11, 2021 04:35 PM PST
  38. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  39. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  40. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  41. Fellowship of the Ring, National Seminar:

    Location: MSRI: Online/Virtual

    To attend this seminar, you must register in advance, by clicking HERE.

    Updated on Jan 11, 2021 04:35 PM PST
  42. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  43. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  44. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  45. Fellowship of the Ring, National Seminar:

    Location: MSRI: Online/Virtual

    To attend this seminar, you must register in advance, by clicking HERE.

    Updated on Jan 11, 2021 04:36 PM PST
  46. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  47. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  48. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  49. Fellowship of the Ring, National Seminar:

    Location: MSRI: Online/Virtual

    To attend this seminar, you must register in advance, by clicking HERE.

    Updated on Jan 11, 2021 04:36 PM PST
  50. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  51. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  52. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  53. Fellowship of the Ring, National Seminar:

    Location: MSRI: Online/Virtual

    To attend this seminar, you must register in advance, by clicking HERE.

    Updated on Jan 11, 2021 04:36 PM PST
  54. Free surface flows in fluid dynamics (UCB Chancellor Professor Course)

    Location: MSRI: Online/Virtual
    Speakers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS))

    A classical subject in the mathematical theory of hydrodynamics consists in studying the evolution of the free surface separating the air from a perfect incompressible fluid. We will examine this problem for two important sets of equations: the water wave equations and the Hele-Shaw equations, including the Muskat problem. They are of different nature, dispersive versus parabolic, but we will see that they can be studied by related tools.

    These courses are intended for graduate students with a general interest in analysis and no prerequisites about any advanced theory is required. A large part of the courses will consist of short self-contained introductions to the following topics: Paradifferential calculus, the fractional Laplacian and the multiplier methods of Morawetz and Lions. These lectures also aim to give a self-contained introduction to certain aspects at the cutting edge of research. I will give a detailed analysis of the Cauchy problem for the water wave, Hele-Shaw and Muskat equations.

    Updated on Jan 08, 2021 05:04 PM PST
  55. Fellowship of the Ring, National Seminar:

    Location: MSRI: Online/Virtual

    To attend this seminar, you must register in advance, by clicking HERE.

    Updated on Jan 11, 2021 04:36 PM PST
  56. Fellowship of the Ring, National Seminar:

    Location: MSRI: Online/Virtual

    To attend this seminar, you must register in advance, by clicking HERE.

    Updated on Jan 11, 2021 04:36 PM PST
  57. Fellowship of the Ring, National Seminar:

    Location: MSRI: Online/Virtual

    To attend this seminar, you must register in advance, by clicking HERE.

    Updated on Jan 11, 2021 04:37 PM PST
  58. Fellowship of the Ring, National Seminar:

    Location: MSRI: Online/Virtual

    To attend this seminar, you must register in advance, by clicking HERE.

    Updated on Jan 11, 2021 04:37 PM PST
No upcoming events under African Diaspora Joint Mathematics Workshop

Past Seminars

  1. Seminar RAS - Virtual Brunch

    Updated on Dec 08, 2020 02:54 PM PST
  2. Seminar DDC - Virtual Brunch

    Updated on Dec 08, 2020 02:56 PM PST
  3. Seminar DDC - Social Event

    Updated on Nov 13, 2020 05:12 PM PST
  4. Seminar Postdoc Lunch

    Updated on Nov 25, 2020 11:30 AM PST
  5. Seminar RAS - Social Event

    Updated on Nov 13, 2020 05:12 PM PST
There are more then 30 past seminars. Please go to Past seminars to see all past seminars.