Logo

Mathematical Sciences Research Institute

Home > Education > Upcoming

Upcoming Educational Events

  1. Seminar ADJOINT Research Seminar: Validated Computation of Special Mathematical Functions

    The advent of reliable computing machines, computer algebra systems, and multiple precision computational packages diminished the need for tables of reference values for computing function values by interpolation, but today's numerical analysts, scientific researchers, and software developers still need a way to confirm the accuracy of numerical algorithms that compute mathematical function values. The field of validated computation of mathematical functions explores the development of multiple precision codes that compute certifiably accurate function values that can be used to test the accuracy of function data from personal, commercial, or publicly available codes. We discuss the analysis used to obtain reliable error bounds for floating point approximations and describe the implementation of the work in a publicly available beta site. 

    Updated on Mar 23, 2021 09:01 AM PDT
  2. Workshop [Moved Online] Critical Issues in Mathematics Education 2021: Initiating, Sustaining, and Researching Mathematics Department Transformation of Introductory Courses for STEM Majors

    Organizers: Naneh Apkarian (Arizona State University), David Bressoud (Macalester College), Pamela Burdman (Just Equations), Jamylle Carter (Diablo Valley college), Ted Coe (Northwest Evaluation Association), Estrella Johnson (Virginia Polytechnic Institute and State University), W. Gary Martin (Auburn University), Michael O'Sullivan (San Diego State University), William Penuel (University of Colorado), LEAD Chris Rasmussen (San Diego State University), Daniel Reinholz (San Diego State University), Wendy Smith (University of Nebraska), David Webb (University of Colorado)

    NOTE: The introductory sessions for this workshop will be held online the morning of April 29th.  Additional sessions will be held when it is once again possible to meet in person.  Times listed on schedule is in Pacfic Standard Time.

    The world is changing, along with perceptions. Many call for the improvement of mathematics teaching and learning, for both citizenry and STEM preparation. To achieve sustainable change, though, the focus needs to extend from individuals to systems. It is not enough to change one classroom or one course. Transformation requires change at all levels: in teaching, programmatic practices, and institutions. This workshop will bring together teachers and researchers from universities, community colleges, and K-12 schools to explore the reasons for and processes by which change in university mathematics departments is initiated, promoted, and sustained and lessons learned from change efforts in K-12. It will review what we know about change at all levels and reflect on stories of failure and success.

    Speaker Abstracts

    Updated on Feb 22, 2021 09:57 AM PST
  3. Summer Graduate School Séminaire de Mathématiques Supérieures 2021: Microlocal Analysis: Theory and Applications (Virtual School)

    Organizers: Suresh Eswarathasan (Dalhousie University), Dmitry Jakobson (McGill University), Katya Krupchyk (University of California, Irvine), Stephane Nonnenmacher (Université de Paris XI)

    Microlocal analysis originated in the study of linear partial differential equations (PDEs) in the high-frequency regime, through a combination of ideas from Fourier analysis and classical Hamiltonian mechanics. In parallel, similar ideas and methods had been developed since the early times of quantum mechanics, the smallness of Planck’s constant allowing to use semiclassical methods. The junction between these two points of view (microlocal and semiclassical) only emerged in 1970s, and has taken its full place in the PDE community in the last 20 years. This methodology resulted in major advances in the understanding of linear and nonlinear PDEs in the last 50 years. Moreover, microlocal methods continue to find new applications in diverse areas of mathematical analysis, such as the spectral theory of nonselfadjoint operators, scattering theory, and inverse problems.

    Updated on Apr 13, 2021 03:49 PM PDT
  4. Summer Graduate School 2021 CRM-PIMS Summer School in Probability (Virtual School)

    Organizers: LEAD Louigi Addario-Berry (McGill University), Omer Angel (University of British Columbia), Alexander Fribergh (University of Montreal), Mathav Murugan (University of British Columbia), Edwin Perkins (University of British Columbia)
    Image
    The Sherrington-Kirkpatrick model, aka the randomly-weighted complete graph. Edge weights are indicated using grayscale. Six distinguished vertices have been randomly chosen; edges between those vertices are shaded black to form a "hidden signal".

    The courses in this summer school focus on mathematical models of group dynamics, how to describe their dynamics and their scaling limits, and the connection to discrete and continuous optimization problems.

    The phrase "group dynamics" is used loosely here -- it may refer to species migration, the spread of a virus, or the propagation of electrons through an inhomogeneous medium, to name a few examples. Very commonly, such systems can be described via stochastic processes which approximately behave like the solution of an appropriate partial differential equation in the large-population limit.

    Updated on Mar 24, 2021 01:52 AM PDT
  5. Summer Graduate School Sparsity of Algebraic Points (Virtual School)

    Organizers: Philipp Habegger (University of Basel), LEAD Hector Pasten (Pontificia Universidad Católica de Chile)
    Sgspic
    The Corvaja-Zannier proof of Siegel's theorem using subspaces. Illustrated by Sofía Pastén Vásquez.

    The theory of Diophantine equations is understood today as the study of algebraic points in algebraic varieties, and it is often the case that algebraic points of arithmetic relevance are expected to be sparse.

    This summer school will introduce the participants to two of the main techniques in the subject: (i) the filtration method to prove algebraic degeneracy of integral points by means of the subspace theorem, leading to special cases of conjectures by Bombieri, Lang, and Vojta, and (ii) unlikely intersections through o-minimality and bi-algebraic geometry, leading to results in the context of the Manin-Mumford conjecture, the André-Oort conjecture, and generalizations. This SGS should provide an entry point to a very active research area in modern number theory.

    Updated on Mar 05, 2021 11:34 AM PST
  6. Workshop [Online] Workshop on Mathematics and Racial Justice

    Organizers: Caleb Ashley (Boston College), Ron Buckmire (Occidental College), Duane Cooper (Morehouse College), Monica Jackson (American University), LEAD Omayra Ortega (Sonoma State University), LEAD Robin Wilson (California State Polytechnic University, Pomona)
    Msri m rjlogo verticalblk rgb

    The overarching goal of the Workshop on Mathematics and Racial Justice is to explore the role that mathematics plays in today’s movement for racial justice. For the purposes of this workshop, racial justice is the result of intentional, active and sustained anti-racist practices that identify and dismantle racist structures and policies that operate to oppress, disenfranchise, harm, and devalue Black people. This workshop will bring together mathematicians, statisticians, computer scientists, and STEM educators as well as members of the general public interested in using the tools of these disciplines to critically examine and eradicate racial disparities in society. Researchers with expertise or interest in problems at the intersection of mathematics, statistics and racial justice are encouraged to participate. This workshop will take place over two weeks and will include sessions on Bias in Algorithms and Technology; Fair Division, Allocation, and Representation; Public Health Disparities; and Racial Inequities in Mathematics Education.

    Updated on Apr 09, 2021 03:35 PM PDT
  7. MSRI-UP MSRI-UP 2021: Parking Functions: Choose your own adventure

    Organizers: Federico Ardila (San Francisco State University), Duane Cooper (Morehouse College), Maria Franco (Queensborough Community College (CUNY); MSRI - Mathematical Sciences Research Institute), LEAD Rebecca Garcia (Sam Houston State University), Pamela Harris (Williams College), Candice Price (Smith College)

    The MSRI-UP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.

    In 2021, MSRI-UP will focus on Parking Functions: Choose your own adventure. The research program will be led by Dr. Pamela E. Harris, Associate Professor of Mathematics at Williams College.

    Updated on Feb 05, 2021 01:42 PM PST
  8. Summer Graduate School Mathematics of Big Data: Sketching and (Multi-) Linear Algebra (Virtual School)

    Organizers: LEAD Kenneth Clarkson (IBM Research Division), Lior Horesh (IBM Thomas J. Watson Research Center), Misha Kilmer (Tufts University), Tamara Kolda (Sandia National Laboratories), Shashanka Ubaru (IBM Thomas J. Watson Research Center)
    Image %281%29

    This summer school will introduce graduate students to sketching-based approaches to computational linear and multi-linear algebra. Sketching here refers to a set of techniques for compressing a matrix, to one with fewer rows, or columns, or entries, usually via various kinds of random linear maps. We will discuss matrix computations, tensor algebras, and such sketching techniques, together with their applications and analysis.

    Updated on Mar 15, 2021 03:16 PM PDT
  9. Summer Graduate School [POSTPONED] Metric Geometry and Geometric Analysis (Oxford, United Kingdom)

    Organizers: LEAD Cornelia Drutu (University of Oxford), Panos Papazoglou (University of Oxford)

    The purpose of the summer school is to introduce graduate students to key mainstream directions in the recent development of geometry, which sprang from Riemannian Geometry in an attempt to use its methods in various contexts of non-smooth geometry. This concerns recent developments in metric generalizations of the theory of nonpositively curved spaces and discretizations of methods in geometry, geometric measure theory and global analysis. The metric geometry perspective gave rise to new results and problems in Riemannian Geometry as well.

    All these themes are intertwined and have developed either together or greatly influencing one another. The summer school will introduce some of the latest developments and the remaining open problems in these very modern areas, and will emphasize their synergy.

     

    Updated on Feb 03, 2021 03:04 PM PST
  10. Summer Graduate School Gauge Theory in Geometry and Topology (Virtual School)

    Organizers: Lynn Heller (Universität Hannover), Francesco Lin (Columbia University), LEAD Laura Starkston (University of California, Davis), Boyu Zhang (Princeton University)
    965 image
    Image by Nick Schmitt

    Figure 1. A rotationally symmetric solution to the self-duality equations on an open and dense subset of the torus. Singularities appear where the surface intersects the ideal boundary at infinity of the hyperbolic 3-space visualized by the wireframe.

    Gauge theory is a geometric language used to formulate many fundamental physical phenomena, which has also had profound impact on our understanding of topology. The main idea is to study the space of solutions to partial differential equations admitting a very large group of local symmetries. Starting in the late 1970s, mathematicians began to unravel surprising connections between gauge theory and many aspects of geometric analysis, algebraic geometry and low-dimensional topology. This influence of gauge theory in geometry and topology is pervasive nowadays, and new developments continue to emerge.

    The goal of the summer school is to introduce students to the foundational aspects of gauge theory, and explore their relations to geometric analysis and low-dimensional topology. By the end of the two-week program, the students will understand the relevant analytic and geometric aspects of several partial differential equations of current interest (including the Yang-Mills ASD equations, the Seiberg-Witten equations, and the Hitchin equations) and some of their most impactful applications to problems in geometry and topology.

    Updated on Mar 05, 2021 11:35 AM PST
  11. Summer Graduate School Random Conformal Geometry (Virtual School)

    Organizers: Mario Bonk (University of California, Los Angeles), Steffen Rohde (University of Washington), LEAD Fredrik Viklund (Royal Institute of Technology)
    Graphisc
    a random quasiconformal map obtained from Beltrami equation by randomly assigning the values of +-1/2 for the Beltrami coefficient on small squares subdividing the unit square

    This Summer Graduate School will cover basic tools that are instrumental in Random Conformal Geometry (the investigation of analytic and geometric objects that arise from natural probabilistic constructions, often motivated by models in mathematical physics) and are at the foundation of the subsequent semester-long program  "The Analysis and Geometry of Random Spaces".  Specific topics are Conformal Field Theory, Brownian Loops and related processes, Quasiconformal Maps, as well as Loewner Energy and Teichmüller Theory.

    Updated on Mar 19, 2021 03:03 PM PDT
  12. Summer Graduate School Foundations and Frontiers of Probabilistic Proofs (Virtual School)

    Organizers: Alessandro Chiesa (University of California, Berkeley), Tom Gur (University of Warwick)
    Proofs main logo
    Several executions of a 3-dimensional sumcheck protocol with a random order of directions (thanks to Dev Ojha for creating the diagram)

    Proofs are at the foundations of mathematics. Viewed through the lens of theoretical computer science, verifying the correctness of a mathematical proof is a fundamental computational task. Indeed, the P versus NP problem, which deals precisely with the complexity of proof verification, is one of the most important open problems in all of mathematics.

    The complexity-theoretic study of proof verification has led to exciting reenvisionings of mathematical proofs. For example, probabilistically checkable proofs (PCPs) admit local-to-global structure that allows verifying a proof by reading only a minuscule portion of it. As another example, interactive proofs allow for verification via a conversation between a prover and a verifier, instead of the traditional static sequence of logical statements. The study of such proof systems has drawn upon deep mathematical tools to derive numerous applications to the theory of computation and beyond.

    In recent years, such probabilistic proofs received much attention due to a new motivation, delegation of computation, which is the emphasis of this summer school. This paradigm admits ultra-fast protocols that allow one party to check the correctness of the computation performed by another, untrusted, party. These protocols have even been realized within recently-deployed technology, for example, as part of cryptographic constructions known as succinct non-interactive arguments of knowledge (SNARKs).

    This summer school will provide an introduction to the field of probabilistic proofs and the beautiful mathematics behind it, as well as prepare students for conducting cutting-edge research in this area.

    Updated on Mar 05, 2021 11:35 AM PST
  13. Workshop Blackwell Tapia Conference 2021

    Organizers: David Banks (Duke University), Hélène Barcelo (MSRI - Mathematical Sciences Research Institute), Lloyd Douglas, Robert Megginson (University of Michigan), Mariel Vazquez (University of California, Davis), Ulrica Wilson (Morehouse College; Institute for Computational and Experimental Research in Mathematics (ICERM))
    Blackwell

    The 2020 Blackwell-Tapia Conference has been rescheduled to 2021.  The Prize Winner is Tatiana Toro, Professor of Mathematics, University of Washington.

    Description: Held every other year, the conference and prize honor David Blackwell, the first African-American member of the National Academy of Science, and Richard Tapia, winner of the National Medal of Science in 2010, two seminal figures who inspired a generation of African-American, Native American, and Latino/Latina students to pursue careers in mathematics. The Blackwell-Tapia Prize recognizes a mathematician who has contributed significantly to research in his or her area of expertise, and who has served as a role model for mathematical scientists and students from underrepresented minority groups or has contributed in other significant ways to addressing the problem of under-representation of minorities in math.

     

    Updated on Mar 10, 2021 03:04 PM PST